Solutions

Solubility: the amount of a solute that dissolves in a given amount of solvent (usually 100 g water) at a particular temperature, forming a saturated solution.

Terms: saturated, unsaturated, supersaturated, miscible, immiscible								
Factors which affect the rate of at which a solute dissolves are:								
Temp, agitalian, Surtaceara								
General Trends:								
• Solids dissolving in liquids:								
Gases dissolving in liquids:								
Molarity: way of expressing concentration. What is the molarity of a 250 mL solution that contains 45.67 grams of Iron III Nitrate Read R								
Dilution of solution: What volume of 6 M sulfuric acid is needed to make 450 mL of 3.0 M sulfuric acid? (what should go into the vol flask first?) (What should go into the vol flask first?)								
Colligative Properties: page 487								
Such as: page 487								
Page 491: molality formula: $m = $								
Page 492: #'s 29 and 30								
Freezing Point Depression/Boiling Point Elevation Information:								
$\Delta T_f = (m)(d_f) (K_f)$ Change in FP = (molality) (dissociation factor) (molal FP constant) (page 494)								
$\Delta T_b = (m)(d_f) (K_b)$ Change in BP = (molality) (dissociation factor) (molal BP constant) (page 495) Covalent compounds have a $d_f = 1$ (they do not break apart to form ions)								

Solutions

	I or C	Dissociates/remains	Electrolyte/NonElec	# particles (d _f)
Sugar College	C	Ceneins	NE	1
Sodium chloride	- Andrews	. P.	F	7
Calcium chloride	#	0	E	3

Molality: $m = \frac{m_0/e}{m_0}$ Change in freezing point = (molality) (dissociation factor) (freezing point constant)

Change in boiling point = (molality) (dissociation factor) (boiling point constant)

solvent	boiling point (°C)	K _b (°C/m)	freezing point (°C)	K _f (°C/m)
·			·	
benzene, C ₆ H ₆	80	2.53	5.5	5.12
camphor	207.4	5.61	178.8	39.7
carbon tetrachloride, CCl ₄	77	5.02	-22	29.8
chloroform, CHCl ₃	61	3.63	-63.5	4.68
ethanol, C ₂ H ₅ OH	78	1.22	-115	1.99
ether	34.6	2.02	-116.3	1.79
phenol	181.8	3.60	40.9	7.40
water, H ₂ O	100	0.52	0	1.86

Practice Problems:

Calculate the molality of a solution prepared by dissolving 10.0 grams of NaCl in 600

grams of water.

Is/ = m x dy x Kayl

Solutions

The freezing point of an aqueous solution of sodium chloride is -20.0 °C. What is the molality of the solution? (ans: 5.4 m)

+20 = m x 2 x 1.96 5 4 = m

If 0.500 mole of a nonelectrolyte solute are dissolved in 500 grams of ether, what is the 5 = lm A [s= lmx/x1.09=1.09°C freezing point of the solution?

To = -118.1°C

A solution of 7.50 grams of a nonelectrolyte in 22.60 grams of water boils at 100.78 °C. What is the molar mass of the compound. (ans: 220 g/m)

If I add 45 grams of sodium chloride to 500 grams of water, what will the melting and boiling points be of the resulting solution? $K_b(H_2O) = 0.52$ °C/m and $K_f(H_2O) = 1.86$

⁰C/m. Sylvell Inst - 769001

Which solution will have a higher boiling point: A solution containing 105 grams of sucrose (C₁₂H₂₂O₁₁) in 500 grams of water or a solution containing 35 grams of sodium

chloride in 500 grams of water?

Successolution 1959 3429 - 307mol Str. 614mx1x.52 = .32'6

Nac(soldion) 359 15859 = 598 ATB= 1,20m x Zx,52=